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This paper presents a novel volume integral formulation based on the interpolation of the magnetic vector potential on edge 

elements in order to deal with 3D nonlinear magnetostatic problems. The formulation ensures rigorously the solenoidality of magnetic 
induction. A strong point is that the convergence of the nonlinear resolution is easily reached after a few iterations without any 
relaxation. Computed results for the TEAM Workshop problem 13 and for an actuator demonstrate the efficiency and accuracy of this 
new formulation. 
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I. INTRODUCTION 

OLUME integral method (VIM) is known today as an 
interesting alternative to classical finite element method 

(FEM) for solving of nonlinear magnetostatic problems. The 
main advantage of VIM over FEM is that neither free space 
mesh nor boundary conditions are required, only active 
regions have to be meshed.  

The integral formulations are the core of magnetostatic 
VIM. Different kinds of formulations have already been 
presented in the literature [1]–[6]. Although these formulations 
are able to yield accurate results in variety numerical 
examples, their applications to   general magnetostatic 
problems are not without any difficulties. The magnetic 
moment method (MMM) [1] [2], which is the oldest and also 
the most popular formulation, cannot accurately deal with 
problems with high susceptibility material and can suffer from 
the well-known “looping pattern”. More recently, H-edge and 
φ-nodal formulations were proposed in [3] [4] [5]. The H-edge 
formulation [3] is based on the interpolation of the magnetic 
field with edge elements. The φ-nodal formulation is on the 
other hand [4] [5] established by an interpolation of the scalar 
potential on nodal elements. They seem to be more flexible 
and robust than the MMM. However, these formulations 
present a quite poor convergence rate for nonlinear resolution 
due to the use of a B(H) curve. Thus, a relaxation process, 
which increases the computation time, is required in order to 
achieve the convergence. Most recently, the B-facet 
formulation based on interpolation of magnetic flux on facet 
elements has been proposed in [6]. This formulation is a very 
interesting approach and ensures a good convergence rate due 
to the use of a H(B) curve and results in an excellent accuracy 
even with very coarse meshes. Nevertheless, the B-facet 
formulation requires the use a face-tree in order to impose the 
solenoidality of B. This procedure can be time consuming and 
decreases the convergence rate of linear system resolutions. 

We propose in this paper a useful formulation based on the 
interpolation of the magnetic vector potential on edge 
elements. We will demonstrate that this formulation can 

overcome the limits of the aforementioned integral 
formulations. The convergence of the nonlinear resolution is 
easily reached after a few iterations without any relaxation. 
Moreover, the fully dense integral matrix does not need to be 
recomputed during the nonlinear resolution and can be 
compressed thanks to efficient matrix compression algorithms 
such as the fast multipoles method or adaptive cross 
approximation. 

II. FORMULATIONS 

For a magnetostatic problem, the governing equations are 
divB = 0 and rotH = J0. By introducing the magnetization M 
so that B = µ0(H + M ), the constitutive equation is expressed 
either as H = υB or M = (υ0 – υ)B. The Maxwell-Ampère 
equation allows the writing of the magnetic field H as  

rϕgradHH −= 0 ,       (1) 

where H0 is the magnetic field created by J0 in the vacuum, 
and φr is the reduced magnetic scalar potential created by 
magnetic material. The potential φr is determined by 
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where r is the distance between the observation and 
integration points, and Ω the magnetic domain. 

The magnetic vector potential A defined by B = rotA can 
be approximated by the interpolation of tangential components 

Aj on edge elements as � = � ����
�

��	
. in this expression;  N 

is the number of edge elements and the wj are  first order 
shape functions of edge elements. Projecting (1) on rotw i in 
domain Ω, we get 
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The two terms on the left hand can be developed as follows:  
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in which Γ is the boundary of domain Ω, n is normal of Γ. 
From (2) and the constitutive equation M = (υ0 – υ)B, we 
express the potential φr as a function of the Aj. The term I2 is 
then written as 
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Hence, using (4) and (6), we write (3) in matrix form as  

( ) 0UA =+ LR ,           (7) 

where matrices R, L , and vector U0 are defined by 
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Since edge elements of first order are used, the magnetic 
field B is constant in each tetrahedral element. Thus, υ is con-
stant piecewise and matrix L is determined by  
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where Nf is number of facets and δυf the difference of 

reluctivity between two elements sharing the facet f.  
Let us notice that rotwi·n is a scalar quantity defined by 

±1/Sf where Sf is the surface of a facet element containing edge 

i. Thus, rotwi·n is taken out of the integrand (9) and matrix L 

is decomposed into the product of two terms. The first is the 

vector δυ dealing with the material properties. The second is 

the fully populated matrix L0 which depends only on the 

double surface integration over faces i.e. properties of 

elements geometry. Thus, matrix L0 can be computed only 

once and during the nonlinear resolution matrix L is updated 

by the product of L0 and vector δυ, which is recomputed after 

each iteration. Matrix R is a FEM matrix structure. 
The singularity of Green's function in (9) is computed 

exactly by an analytical integration. Due to the use of the 

vector potential A, the solenoidality of magnetic induction is 

naturally verified.   
System (7) is compatible according to [7]. Consequently, it 

can be straightforwardly solved by an iterative solver without 

any gauge condition and the obtained solution is unique. 

III.  NUMERICAL RESULTS 

The TEAM Workshop problem 13 [8] (Fig.1.a) and an 

actuator (Fig.2.a) were studied in order to demonstrate the 

efficiency of the proposed formulation. The classic Newton 

Raphson method was used for solving of the nonlinear system. 
For the problems13, the magnetomotive force is 1000 AT. 

The obtained average flux densities inside steel plate 

compared to measured values are shown on Fig.1.b. Computed  

 

 
a) b) 

Fig.1. TEAM 13. a) Geometry. b) Average flux density inside steel plate. 

 

a) b) 

Fig.2. Actuator. a) Geometry. b) Convergences of force computation 

results are very close to the measurement. A very coarse mesh 

of 1,235 tetrahedral elements gives accurate results. With an 

absolute stop criterion of 1E-6, the Newton Raphson 

procedure has converged after five iterations in 6.7 seconds on 

a standard computer. 
The goal of the second example was to compute the global 

force acting on the pallet of the actuator. Once (7) was solved, 

both the method of equivalent magnetic charges and virtual 

work can be applied. They provide the same results. Fig. 2.b 

shows the comparaison of the convergence with FEM. In order 

to obtain a result deviated by 5% from the reference value, 

VIM needs only a mesh of 100 tetrahedra whereas the FEM 

requires a mesh containing 12,000 elements on active regions. 
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